
@@export_scripts@@

The joys of
home-
cooked apps
Blake Watson

@@export_scripts@@

Hey everyone. I’m Blake Watson. I’m a
frontend developer working remotely with
MRI Technologies out of Houston, TX. We’re
a contractor for NASA and commercial space
companies. I primarily work on a suite of
internal applications called COSMIC, which
NASA uses for tracking and managing
hardware related to the spacesuit.
I’m also a Mad Genius alum so I always
enjoy coming back to visit. Mad Genius
definitely has the coolest offices of
anywhere. And also the best-looking stuff I
ever created was when I worked here. So
thanks to Mad Genius for hosting.

@@export_scripts@@

blakewatson.com
/home-cooked

@@export_scripts@@

So I’m going to be talking
about the joys of home-cooked
apps. If you want to follow
along or reference it later
there is a PDF and web
version of this talk
available here and it will
have all of the links to the
stuff I mention during the
talk.

@@export_scripts@@

Home-
cooked apps

@@export_scripts@@

So what am I talking about?
What is a home-cooked app?
It’s the kind of app that you
make for yourself, to solve
your own problem or for your
own entertainment. Much like a
home-cooked meal, they can be
shared with friends or family.
But they aren’t designed for
mass consumption.

@@export_scripts@@

@@export_scripts@@

They aren’t optimized for

shareholders. There are no

sales funnels. No user

stories. And they don’t scale.

They don’t have to. They

aren’t designed for thousands

or millions of users. These

are the kinds of apps that you

make for a handful of people.

Or maybe just for you.

@@export_scripts@@

Robin
Sloan
author &
home
cook

@@export_scripts@@

Now I didn’t invent this term. A couple of years ago I read an

. He’s a New York Times best-selling author and calls himself the "programming

equivalent of a home cook." In this article he described making this sort of short

form video messaging service just for use in his household.

It was super simple. You basically hit record, send the video, and the receiver views

it, after which it disappears.

That’s it. He built it in a moment of frustration when an existing app his family had

been using was going away. The important bit here is that he didn’t make this app to

be a product for the general public. He didn’t even design it to be a shared open

source project. It's literally an app built just for their own use. And that’s what

makes it home-cooked.

I’ve been making these kinds of apps for myself for years. It’s one of the things

that drew me into programming. But I didn’t have a term for them or even a context

for thinking about them until I read Sloan’s article. I was thrilled when read it

because it spoke to ideas I held but hadn’t thought about actively—the idea that you

can make useful things and they don’t need to be packaged for mass adoption to be

successful.

I love this. I think it’s a powerful idea. And maybe developers do this all this all

the time. But this is the first time I heard it expressed this way and it smacked me

right in the face—like of course we can make stuff just for ourselves. This is a

thing we can do.

Now, that’s not to say you should never generalize a solution to make it more useful
for more people. I’m just saying you don’t have to. Not every idea needs to be a
product or a package.

Making a home-cooked app is about redefining what success looks like.

article by Robin
Sloan

https://www.robinsloan.com/notes/home-cooked-app/

@@export_scripts@@

@@export_scripts@@

I think back to my late grandfather who

would often take to his shop to make custom

things for himself and his family—a cabinet

for his wife, toys for the grandkids, and

even a custom-made wheelchair lock down

system designed specifically for the van

and wheelchairs me and my brother had at

the time. As a kid I was mesmerized with

his craftsmanship. From watching him, the

idea of building things for oneself was

ingrained in me from a young age. I would

go on to learn that having a disability

often means coming up with creative

solutions to your problems.

Okay, enough backstory. Let’s get into it.

@@export_scripts@@

Why? How?
What?

@@export_scripts@@

My job here tonight is to:

The goal is to get your wheels turning
on the sorts of things you could make
to improve your own life and those
close to you.

Convince you that you should make
your own home-cooked apps

1.

Show you examples of home-cooked
apps

2.

Give you a little recipe to help
you get started

3.

@@export_scripts@@

but why tho?

@@export_scripts@@

There are several good reasons.

And with that let’s take a look at some examples. By their very nature,

they are going to be weirdly specific. But that’s the whole point.

You can make exactly what you want. Have you ever used an app and thought

to yourself, "Man, this app would be dope if it just did this one thing"?
Guess I’ll have to make a feature request and wait around for months
until the developer says they’re not going to do it. No, guess what? When
you make it yourself, you can make it do that thing.

–

If you build with the idea that you are only serving yourself or a few

people, you can skip over many of the challenging problems of software

development: compatibility, extensibility, standards, best practices,

scaling, etc. In land of home-cooked apps, the only important benchmark

is, does it work.

–

Another reason is privacy. You have some control over your data,

depending on how you build your app. You have an opportunity to keep it

out of the hands of big companies who will harvest it and use it for its

own purposes.

–

Lastly, it’s fun. Building what you want and then using it is a rewarding

experience. It’s magic to me. It’s what pulled me into web dev and why I

still get excited about it.

–

@@export_scripts@@

Start
I cheated. This became an actual

product.

@@export_scripts@@

Okay I’m going to start (heh)

the tour of examples by

breaking one of my own rules.

I made for

myself but ended up packaging

it up for other people to

use. It ultimately became my

main side project,

.

this new tab page

A Fine
Start

https://start.blakewatson.com/
https://afinestart.me/

@@export_scripts@@

@@export_scripts@@

The idea here was to have a single HTML

file as a new tab page that would allow you

to add and organize text links directly on

the page. This might seem trivial but at

the time I created it, built-in new tab

pages were using gratuitous visual effects,

ugly screenshots of webpages, and very poor

user experience in my opinion. I just

wanted a new tab page with plain text links

that I could add, edit, and arrange.

I made it for me but ended up packaging it

up into a product and found out others

liked it too. That’s cool, but it’s not

required in the world of home-cooked apps.

@@export_scripts@@

My DIY Pinboard
replacement

@@export_scripts@@

If you’ve never heard of Pinboard, it’s a web app
for keeping bookmarks. So it keeps the URL, title,
description, and you can add tags for
organization. I’ve been a longtime user and this
app met my needs adequately for a long time.
But it was also becoming the place where my
bookmarks went to die. I felt like retrieving
things from it wasn’t very easy. I also paid for
an optional archival account. This means that
every link I save gets cached by Pinboard so that
if that link goes bad (which so many of them do) I
would still have a copy.
But I noticed my archival account was often
failing to capture pages. And the whole thing was
becoming unenjoyable.
What to do?

@@export_scripts@@

@@export_scripts@@

You will be shocked to hear that I
created my own solution. It’s a NodeJS
app that saves URLs along with metadata
like descriptions and tags. It
automatically sends the URL to Wayback
Machine and it saves the cached URL that
Wayback sends back, so that I always
have access to a cached copy.
I did break my own rule and

 with instructions for setting
it up. But it comes with the huge caveat
that I designed this for me and didn’t
take other users into account.

open source
this app

https://github.com/blakewatson/bookmarks

@@export_scripts@@

Groceries

@@export_scripts@@

Here’s a fun one that was

made for family. We needed a

way to have a shared grocery

list between me, my brother,

and our mother. There are

numerous existing apps for

list sharing but they all

have cruft that a non-tech-

savvy user (ie, my mom) would

find confusing.

@@export_scripts@@

@@export_scripts@@

So my brother and I teamed up to build this web app. It’s optimized to be
a home screen app. So Mom is able to use it on her phone as an app and
Matt and I can use it on a desktop web browser (since mobile devices are a
bit difficult for us to handle).
The design is as dead simple as possible. It uses large emoji buttons for
basic actions. You can add things, check them off, edit them, or delete
them. We decided that drag-and-drop sort was too much UI complication, so
we added this move-to-top button, which will shoot an item to the top of
the list.
This inadvertently triggered a war between me and Matt, trying to make
sure the stuff we want is at the top of the list. Like one day I checked
the list and I noticed Matt’s bottle of Jack Daniels was at the top of the
list.
And that’s the best part of the app—the list is synced so that any of us
can add things to the list. There isn’t even a concept of users. We all
use the same token which we put in once and it basically saves it forever.
It’s super secure obviously.
You can’t make multiple lists. That would introduce more UI. Instead, the
same list is reused for every grocery trip. There’s a button that unchecks
everything and one that deletes everything.
That’s it. That’s the app. It’s silly, really, but works great for us.

@@export_scripts@@

The time I
accidentally

created a
domain-specific

language

@@export_scripts@@

The previous apps we looked at, while technically being
home cooked just for me, were still fairly relatable
examples that a lot of people might find useful. A new
tab page; bookmarks organizer; a grocery list.
But now we’re getting into the real obscure stuff. My
brother and I have a team of caregivers that work
various day and night shifts. At the end of each pay
period they need to turn in detailed timesheets.
Sometimes these timesheets are difficult and error-
prone.
I wanted a way to keep my own records and also help my
caregivers complete the timesheets accurately. I toyed
around briefly with a spreadsheet. I know they are
powerful, but man I hate them. After being annoyed with
that, I decided that what I really needed was something
that worked like Markdown. I wanted a plaintext entry
system. It works like this:

@@export_scripts@@

This is a comment. It is ignored.

1 Day
Johnny Appleseed

1-2 Night
Jane Doe

Johnny left early
2 Day (7:00am-3:00pm)
Johnny Appleseed

2-3 Night *
Jane Doe

@@export_scripts@@

For each shift that is worked, I make an entry. Entries
are separated by a line break. Each entry is two lines.
The top line is the date followed by the type of shift
that was worked (Day/Night). The next line is the name
of the person who worked.
Most shifts follow a standard time range so I don’t
specify the start and end time. But if, for some
reason, someone works a different time schedule than
normal, I can specify that in parentheses.
That last piece of metadata is represented by an
asterisk and it means my bother and I were together for
the whole shift and the caregiver worked with both of
us. That means they'll need to do a timesheet for each
of us and split the hours.
I don’t specify the month and the year because it’ll be
in the filename. That info will be used at compile
time, which we'll see in a second.

@@export_scripts@@

@@export_scripts@@

I wrote a little frontend tool
that can process this syntax
and spit out a table of dates
and times that I can print out
that caregivers can reference
when they are working on their
timesheets.
This is where I paste in the
plaintext data and provide the
month and year.

@@export_scripts@@

@@export_scripts@@

This is an example printout. If it’s hard to tell

what’s going on here, yeah I agree—and that’s why I

made this tool to figure it out. The timesheets we have

to use were terribly designed.

The agency requires that the timesheets be completed by

hand so what my tool does is output something that my

caregivers can use as a reference while they are

filling out the timesheets.

This example represents someone who worked the

overnight shift every weekday. To record all the

information it took three timesheets. Exactly half of

the hours are assigned to me and the other half

assigned to my brother.

Overnight shifts are particularly awkward to deal with

because they span across two different dates, which

means it takes multiple columns to record them.

@@export_scripts@@

A home-cooked
language

@@export_scripts@@

I didn’t know it at the time, but this

kind of thing has a name—

. What I created was essentially

a human-readable computer language

designed for tracking caregiver hours.

My frontend tool is the compiler, which

produces the final output—HTML tables I

can print. I store all of my records in

my note-taking app of choice as source
code.

This year marks one decade since I first

made this app. I’m sure I would do it

much differently now, but even with its

idiosyncrasies, it gets the job done.

domain-specific
language

https://en.wikipedia.org/wiki/Domain-specific_language

@@export_scripts@@

Recipe

@@export_scripts@@

These apps were made for me

so I’m not expecting you to

think, “Oh I could use that.”

But I am expecting you to
think about how you could

address some of your own

specific wants and needs.

@@export_scripts@@

How to home-cook an
app

The What

@@export_scripts@@

This is just a little recipe to get

you started. There is really no right

or wrong way to go about it. If it

works for you, then do it.

Think of a problem of yours that you

could solve. For example, some tedious

work that you wish you had an app for

but don’t. Or something you and your

friends would like to use that isn’t

readily available. It could be

something a popular app does but in a

way that is much simpler and

straightforward.

@@export_scripts@@

How to home-cook an
app

The What,
exactly

@@export_scripts@@

Decide what, exactly, you want to build. Give yourself
some rough requirements. Make a list. If it has UI, do
little napkin sketch. I like to go into my notes app of
choice and type out a list of the features I need and
jot down a few notes about the behavior of the app.
It’s important at this stage to explore ideas but don’t
be tempted to add a million features. You don’t want to
get overwhelmed and kill the project on the vine.
You may have heard the term, MVP, or minimum viable
product. It’s the idea that you define the least amount
of features that accomplish the main goal of the app.
That’s close to what we're doing here, but even easier!
Because remember, we're not making a product per se.
It’s something simpler and rougher. It’s home-cooked.
Let’s call it a minimum viable meal. That’s your job as
a home cook to figure out at this stage.
The main thing is to solve your problem, not some
abstract user’s problem.

@@export_scripts@@

How to home-cook an
app

The How

@@export_scripts@@

Determine the easiest way to get to your

goal. No need to over-complicate things—

unless you enjoy that sort of thing! We are

developers after all.

My advice here is to use what you know. But

really you can use whatever technology you

want. I don’t care if it’s new and shiny or

old and boring. Use jQuery if you want. Or

no JavaScript at all. This thing you’re

building just needs to work for you so feel

free to adopt whatever technical debt you

want.

What’s important is that all decisions are

in service of getting the thing to work.

@@export_scripts@@

How to home-cook an
app

Build it!

@@export_scripts@@

Even if it’s a larger project, just make

small progress toward it. I wrote an

article about .

Check out the written version of this talk

for a link to that.

But TL;DR, small progress adds up. Use your

commit history for motivation—it’s an

automatic list of everything you have

accomplished. If you’ve kept things simple,

then hopefully it won’t take too long to

knock out the rough draft.

Once you start using it you can take note

of any enhancements or bug fixes you need

to make.

finishing side projects

https://blakewatson.com/journal/finishing-side-projects/

@@export_scripts@@

Go cook up
your own
apps

@@export_scripts@@

Most of the home-cooked apps I’ve made took me

a weekend or two. When you strip an app down

to its essentials and the only requirements

are yours, you have the freedom to hack things

together however you see fit.

I think the time investment on these projects

was totally worth it. The last example of the

timesheet system, in particular, has saved me

probably days of time pouring over timesheets.

Hopefully this has you thinking of how to

tackle a problem of your own or make a fun

thing just for friends or family. Home-cooked

apps are fun, useful, and a breath of fresh

air.

So, go forth cook up some of your own.

