
No build tool? No problem!
Blake Watson
blakewatson.com/magnolia2025

[Reset timer] Hey everyone! I’m Blake. I’m super excited to be
sharing in some tech nerdery with you guys. I want to share a
few things up front quickly.

blakewatson.com/magnolia2025

If you want to follow along or if you want to reference this talk
later, there is a full text version available at this URL. This will
have links to things I mentioned, some CodePen demos, and
stuff like that.

Frontend Engineer
MRI Technologies

A little about me. I work remotely as a Frontend Engineer at
MRI Technologies in Houston, TX. We build a web-based
spacesuit hardware management system called COSMIC for
teams at NASA.

Aside from work. I’m a side-project enthusiast, which is kind of
what my last Magnolia talk was about. I have a disability called
spinal muscular atrophy so I use a power wheelchair and a lot
of assistive tech. I enjoy playing Dungeons & Dragons. I enjoy
blogging and creative writing. And I have a bit of a font-
hoarding problem.

Community Sponsor
htmlforpeople.com

I’m proud to support MagnoliaConf as a sponsor this year. I
know it’s a lot of work to put this conference on and I really
appreciate the work of Kayla and Richard and everyone
involved. I'm using my sponsorship to promote this totally free
online book I wrote last year called HTML for People. HTML
isn’t only for people working in the tech field. Anyone should be
able to make a website with HTML if they want. Pass it along to
your non-coder friends. It's super beginner friendly. That’s
htmlforpeople.com.

Frontend
build tools

Ok yall. I have a confession to make. I’m fed up. I’m absolutely sick of
frontend build tools. I’m talking about Webpack, Vite, Rollup, ESBuild
—anything that processes your frontend code into a bundled version
that can be read by the browser. It seems like every project you look
at shoves an npm installation in your face. I’m not saying there aren’t
things to like about them. But they add complexity and some damn
annoying technical debt in the long term.

Thing is, browsers have been getting better. They have native
support for features that previously required build tools. Now's the
time to jump ship and leverage the power of the browser directly.

To that end, we'll go on a whirlwind tour of the features and
techniques available in today’s browsers. But first, we should
consider what build tools do for us.

Reasons for using build tools

Languages and
framework support
TypeScript

Sass

JSX

.svelte , .vue , etc.

A huge reason for turning to build tools is to support
languages and framework file formats that the browser
doesn’t recognize. The biggest examples are:

TypeScript for type-aware JavaScript
Sass for advanced stylesheets
JSX for expressive templates in React
Framework specific file formats like Vue and Svelte.
Tailwind for radically atomic CSS
And many more…

Reasons for using build tools

Easily use third-party code
npm install everything@latest --yolo

Build tools also make it easy to install and use third-party
libraries and packages. You npm install them, import them,
and then you are good to go. The build tool takes care of
dependency management, module resolution, bundling,
minification, and other optimizations.

Reasons for using build tools

Optimizations

A build tool typically bundles all of your code into one file for
the browser to read and minifies it to reduce its size.

It eliminates parts of your codebase that aren’t being used.

It can do things like chunking to break up your JavaScript
bundle and serve code in a just-in-time manner.

And they can process other assets like images to automatically
optimize them for the web.

Reasons not to
use build tools
rm -rf node_modules

It sounds like I'm doing a marketing pitch for build tools. I’m
just trying to be fair okay? Don’t say I didn’t give build tools a
fair shake, okay? But they add so much complexity.

Photo by Michał Parzuchowski on Unsplash

Let me tell you a story. It goes a little something like this. You start a new
project. You npm install a thing. Then you realize you'd like another thing, so
you npm install that. That thing has you npm install a few other things. And
now you're really cooking with grease. You start building out your project.
Everything is going great. You ship the project and pat yourself on the back.

A year later, you get a request to make a small, easy change to the project.
So you open it up. You run your build. And the build fails. You poke around
and realize that some package or other needs to be updated. But that
package can't be updated because it relies on another package that needs
to be updated. And that package can't be updated without making more
changes to your codebase. Before you know it, you're looking at hours of
work trying to get your build process up again, all so you can make a change
that should have taken five minutes.

By the way, are the thousands of packages I just stuffed into this project
like... safe?

https://unsplash.com/photos/boy-playing-jenga-geNNFqfvw48

Nope. We're having to put too much trust into too many
authors and packages and infrastructure. And with every
package we install, our attack surface becomes a larger.

Browsers are good actually
Embrace runtime

Build tools and bundlers have been around for a while now
because they offered a developer experience that we weren't
getting when we were using the browser directly. But with
some of the features the browsers have gained, we can still
have nice things without the build step.

So no more compiling. Let's write the code the browser is going
to run. Let's embrace runtime. We're starting our tour off with
styling.

You probably
don’t need Sass

:root { --primary-color: #3498db;
}

.card {
 background: white;
 color: var(--primary-color);
 .header {
 font-size: 1.2rem;
 &:hover {
 color: #ffffff;
 background: var(--primary-
color);
 }
 }
}

I'd say a lot of projects gained a build step because the developers
wanted to use Sass and probably because they wanted to use
variables and they wanted to use nesting.

Well, the days of needing Sass for them are over.

You've probably seen CSS custom properties (variables) by now.
They begin with two dashes and you can access them using the var
function. These are actually way better than Sass variables because
they can be changed at runtime. And not only by CSS code, but also
by JavaScript! This combo gives you endless possibilities to change
your design based on user actions.

CSS nesting is Baseline 2023. Later in 2026 it will be considered
widely available, meaning you've got browser support going back for
about two and a half years. We're basically there.

CSS goodies
New and newish things

Custom functions

Anchor positioning

Color utilities

Advanced custom properties

Many more…

And there are all sorts of goodies coming in CSS. I'm serious, I
need to take a course in CSS again. If you’re like me and it's
been a minute since you brushed up on your CSS knowledge,
then you're probably missing out on a ton of really cool stuff.
But yes, some new and newish things are:

Custom functions
Anchor positioning
Color utilities
Advanced custom properties
Many more…

You might not
need JavaScript

So we've seen some modern CSS, but how about JavaScript?
Do you even really need it? Okay, probably, but let's take a look
at some HTML components that you previously may have used
JavaScript to build. A lot of this is inspired by a blog post by

 and I’ve linked it in the slide notes.Lyra Rebane

https://lyra.horse/blog/2025/08/you-dont-need-js/?cmid=4c3ebceb-ac0f-477f-b36d-69c0c86ae9b7

Reveal and collapse
with <details>
and <summary>

<details>
 <summary>
 Why did Han Solo refuse the
steak dinner?
 </summary>

 <p>It was Chewy.</p>
</details>

A common need in web pages is to click an element to reveal
some content. Previously, this required a bit of fancy CSS or,
commonly, a bit of JavaScript. HTML can do this very easily
with the built-in <details> and <summary> elements. These
have been around for a while now, so you may have heard of
them, but if not, here's a quick example of how they work.

That gives us something like this.

<div class="accordion">
 <details name="ali">
 <summary>Who is the greatest?</summary>
 <p>Muhammad Ali</p>
 </details>

 <details name="ali">
 <summary>How do you know?</summary>
 <p>Because he said it over and over.</p>
 </details>

 <details name="ali">
 <summary>What was his secret?</summary>
 <p>Float like a butterfly, sting like a bee.</p>
 </details>
</div>

We can take this a bit further and combine multiple
<details> elements to create an accordion-style control. By
giving each element a name attribute, the group becomes
mutually exclusive—where opening one element closes the
others.

.accordion {
 ...

 details {
 ...

 /* styles that target the open state of the element */
 &[open] {
 ...

 /* animate everything inside the <details> element except for the
<summary> */
 & > *:not(summary) {
 animation: fade-in 0.3s ease-out forwards;
 }
 }
 }
}

I stripped out some of this styling to make it readable on the
slide, but these are the important bits of it. You can find the full
code in a in the slide notes, but I wanted to
demonstrate that you can style a <details> element based
on whether it's open or not with an attribute selector.

CodePen

https://codepen.io/blakewatson/pen/YPwxpYN

No-JS Accordion

That gives us something that looks like this. And we did it with
zero JavaScript!

No-JS tabs

Here’s another example of what you can accomplish with
HTML and a bit of smart CSS. The tabs across the top are
actually radio inputs. With CSS we can hide the radio input
itself and style the label to look like a tab. Based on which radio
button is checked, we make one of the three content divs
visible. If you're interested in seeing the code for this, I have a

 you can find in the slide notes. That's just two
little examples, there is much much more where that came
from. But I just wanted to give you a taste of HTML/CSS only
solutions.

CodePen demo

https://codepen.io/blakewatson/pen/Qwyajjr

Use TypeScript
without a build tool

You might say, okay Blake, but I have a real app and I do need
JavaScript. And in fact, I need TypeScript.

TypeScript doesn’t run in the browser, so you will need to
compile it into JavaScript first, which means you'll need a build
step. But writing TypeScript is not the only way to use
TypeScript. Most modern code editors use TypeScript's
language server to type check your regular JavaScript files.

Add this comment
to the top of the file
// @ts-check

A quick way to make that explicit is to put the following
comment at the beginning of your JavaScript file. Even with
this alone you will get some basic type checking of your
JavaScript code. But if you want to go the extra mile and add
type notation of your own, you can do it with JSDoc.

Add type
notation
with JSDoc

/**
 * Add two numbers together.
 * @param {number} a
 * @param {number} b
 * @returns {number}
 */
function add(a, b) {
 return a + b;
}

/** @type {number} */
const sum = add(13, 29); // 42

console.log(add(6, '7')); // '67'
- type error

JSDoc is a powerful tool that can generate documentation
from your codebase based on a special comment syntax. In our
case, we're not actually going to generate any documentation.
But by using the JSDoc comment syntax, we can tell the editor
what types we expect. For example, we have this add function.

We put a comment above it and start with /** for it to be
recognized as JSDoc. Then we can use a handful of tags to
inform the editor about what the function expects. We're using
the @param tag to tell the editor that we expect both
parameters to be numbers. And we use the @returns tag to
type the return value as a number. Inside the curly brackets,
you can typically use any valid TypeScript expression.

/**
 * @typedef {Object} User
 * @property {string} name
 * @property {number} age
 */

/** @type {User} */
const currentUser = { name: 'Tilly', age: 31 };

We can even define custom object types using the @typedef
tag.

So in this example we've created a type called User. It should
have a name and an age. And then we're creating a variable
that represents a User. If we tried to use the string 31 for age
rather than a number, we would get a little red squiggly
underline in the editor, and hovering over it would tell us what's
wrong.

If you are used to TypeScript, then this syntax should feel
familiar, if a bit more verbose. VS Code in particular has great
editor support for type-checking this way.

jsconfig.json {

 "compilerOptions": {

 "checkJs": true,

 "target": "ES2022",

 "module": "nodenext", // TS uses

NodeNext ESM rules; closest to

browser ESM

 "lib": ["ES2022", "DOM",

"DOM.Iterable"],

 "verbatimModuleSyntax": true //

keeps your import/export syntax

 },

 "include": ["js/**/*"],

 "exclude": ["node_modules",

"dist"]

}

Now if you have a lot of JavaScript files, you can enable type
checking in all of them with a jsconfig file. This sample one is
specifically tuned for no-build situations. It the editor to check
your JavaScript files, that you're using newish JavaScript
features, that you might use JavaScript modules which we'll
look at shortly. And that you are in a browser environment so
you want DOM objects available.

Use the include option to specify what files to check. Use
exclude to skip over node_modules and any build folders
you may have. (Which is hopefully none).

Use a TypeScript declaration file
types.d.ts

export type Person = {
 id: string;
 name: string;
 email: string;
 age: number;
 roles: string[];
};

app.js

/** @typedef
{import("../types.d.ts").Person}
Person */

/** @type {Person} */
let person = {
 id: "c0ffee",
 name: "Blake Watson",
 email: "blake@blakewatson.com",
 age: 40,
 roles: ["developer",
"dungeon_master"]
};

If you're a TypeScript veteran and you really can't be bothered
to make a bunch of custom types with JSDoc, you could use a
TypeScript declaration file and put a bunch of your types there.
Or more than one. I mean there's kind of a million ways to get
types into your project. And then using the import function
syntax you can import types in JSDoc to use in your regular
JavaScript files.

If you do this, just make sure your TypeScript files are included
in your jsconfig.json.

Run tsc to check our code
npm install typescript --save-dev

npx tsc --project jsconfig.json --noEmit --watch

You can even type check with tsc if you want. This snippet will
watch your code and report any errors. Handy for local
development and if you want a CI/CD pipeline that fails when
there are type errors.

Replace bundling with
JavaScript modules
Local JS file
import { add } from
'./js/math.js';

const sum = add(2, 2);

index.html
<script type="module"
src="js/app.js"></script>

Alright, continuing the JavaScript train. You're probably
familiar with npm installing something and then importing it
into your code.

It turns out that browsers support JavaScript modules natively.
So you can break your project up and import things and the
browser can read those just fine. When you add your script to
the page like you normally would, you just give the script tag a
type="module" attribute to let it know you're loading a
module.

It's worth noting that this also automatically defers the script—
same as if you used the defer attribute.

i can haz
npm pakig?

Okay, that's cool and all, but that doesn't help me stuff a bunch
of NPM packages into my no-build project. So how do I go
about doing that? If you're using modules, you need the ESM-
compatible version of the library or framework that you are
after. (ESM meaning ECMAScript module, ECMAScript
meaning the standard that JavaScript is based off of which
isn’t called JavaScript because Oracle’s army of lawyers said
no).

Finding the ESM build of a project if it exists is easier said than
done.

https://unpkg.com/vue@3.5.22/dist/vue.esm-browser.js

<div id="app">{{ message }}</div>

<script type="module">
 import { createApp, ref } from './js/vue.esm-browser.js'

 createApp({
 setup() {
 const message = ref('Hello Vue!')
 return {
 message
 }
 }
 }).mount('#app')
</script>

An example of one that's easy is Vue.js. You can grab the global
version which is totally fine but in this case we're going to grab
the ESM compatible version. They have instructions on how to
get it and they boil down to grabbing it from a CDN.

You could import it from the CDN directly, but I prefer to
download it and host it myself.

So here is a small Vue.js app using imports that can run
directly in the browser.

How to get ESM
compatible builds

npmjs.com Code tab–
jsDelivr.com–
esm.sh–
download-esm–

It's hard to find ESM compatible builds sometimes because skipping the
build step is a very intentional choice these days. Projects like to be installed
with npm and they don't make it easy to do otherwise sometimes.

But I've had luck using these methods. Often times you can go directly to
 and go to a package and pop over to the code tab. If they have ESM

builds there, you can grab them.

 and are CDNs that often have automated ESM versions of
packages. And jsDelivr has a nice UI for browsing. So you can look for them
that way.

Sometimes ESM files from a CDN will turn around and import other files
from a CDN which may not be what you want. In that case, you can use this
tool by Simon Wilson called which given a URL to an ESM
package on a CDN will download a flat list of all the dependencies for you.

npm

jsDelivr esm.sh

download-esm

https://www.npmjs.com/
https://www.jsdelivr.com/
https://esm.sh/
https://simonwillison.net/2023/May/2/download-esm/

Considerations
with modules
Minification (meh)
Network requests (mostly meh)
<link rel="modulepreload" href="...">

Dynamic import() (cool if needed)

There are more things I didn't have time to cover. But I wanted to
quickly address some of the trade-offs that you're making when you
use modules.

No-build means no minification. But that’s not nearly as important as
gzipping, which your server is probably already doing anyway.

Modules do mean more network requests, but this mostly isn't an
issue. The thing that can get you into trouble is a bunch of deeply
nested module dependencies. If you have that situation, you can use
the link tag with rel=modulepreload to tell the browser ahead of
time what modules you're going to be loading.

We don't have dead code elimination, but we do have the import
function, which you could use inside of conditionals to import extra
JavaScript if you need to.

i can haz
fraymwurks??

What about JavaScript frameworks? Giving up the build step
doesn't mean you have to give up on fancy reactive JavaScript
frameworks. You have a decent number of choices here and, if
you combine them with the JavaScript module pattern we
looked at previously, you can get a no-build setup that feels
pretty nice.

Vue.js
<div id="app">{{ message }}</div>

<script type="module">
 import { createApp, ref } from './js/vue.esm-browser.js'

 createApp({
 setup() {
 const message = ref('Hello Vue!')
 return {
 message
 }
 }
 }).mount('#app')
</script>

We looked at how you could use Vue earlier as they have an
ESM compatible build. That's totally an option. You can use the
CDN global version of Vue as well if you wanted to. But I think
for many projects there is a better, easier option. And that's
AlpineJS.

No-build frameworks

Alpine.js
<script src="//unpkg.com/alpinejs" defer></script>

<div x-data="{ open: false }">
 <button @click="open = true">
 Expand
 </button>

 Content...

</div>

I was introduced to this framework a couple of years ago by my brother, Matt, who is
chilling in the back over there.

At first I was unimpressed but then I started using it and it’s actually kind of amazing.
You plop it into a script tag and just start using it. No build or configuration necessary. It
uses attributes in your HTML.

So in this example, by putting x-data on this <div>, you're creating an Alpine
component. That attribute defines whatever state your component needs. So in this
case, it's the boolean value open.

Then you have a button, it has an @click attribute, which should look familiar if you've
used Vue before. So clicking that button changes the value to true. And then below the
button, we have a with an x-show attribute on it. That attribute is a conditional,
so it will hide or show the element based on the value you provide it, which in this case is
our boolean value, open. So this span will show up if it's true, or hide if it's false.

Alpine is nice because it has a relatively small API. There's not as much stuff to wrap
your head around as some other frameworks. It works right out of the box with no
configuration. And it really works great with the no-build philosophy.

<div x-data="{ todos: [], newTask: '' }" x-init="

 const data = await fetch('https://api.jsonbin.io/v3/b/68f4e966ae596e708f1cb665',

 { headers: { 'x-access-key': '$2a$10$c5RwWN2B7YgIKM5vTLdPSOvpsf43zuT.Nsbsi4f3sYNPp.WvIZqSe' } }

);

 todos = (await data.json()).record;

">

 <h1>Todos</h1>

 <template x-for="todo in todos">

 <li x-text="todo">

 </template>

 <form @submit.prevent="todos.push(newTask); newTask = '';">

 <label>

 New todo

 <input type="text" x-model="newTask">

 </label>

 <button>Add</button>

 </form>

</div>

I want to show you this slightly more complex example just to give you a better idea of
what's possible with Alpine.

In this example we have a super simple to-do list. First we create a component by adding x-
data and some state. We then add an x-init attribute. This is code that will run when the
component is first initialized. The wild thing is that we can write asynchronous JavaScript
inside most Alpine attributes. So I can fetch some existing to-dos from an API and populate
the to-dos array from that. Yes, it's fugly, but it works and it's kind of amazing. But don't
worry there are ways to write organized Alpine code if you don't like this style.

Alright, so we can loop over our to-dos using the x-for attribute. In Alpine, you need to put
that on a template tag, but no biggie. Each list item will set its inner text to the content of
the to-do using the x-text attribute.

And then below the list we have a form. It has a text input and a button. We use Alpine's x-
model attribute to keep track of what's in the text input. If you'll look back up at our x-data
attribute at the top of the component, you can see we're tracking a string called newTask.
So our input is bound to that value.

Then our form has a submit handler which will push the new task to the list and then clear
the input. It also calls preventDefault so that we don't get a page reload.

i can haz
reakt ???
Y ES (K I N D O F)

If you are a diehard React fan, bless your heart, then your
problem becomes finding a way to run JSX. Browsers don't
know JSX but they do know how to process

.
tagged template

literals

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

htm
import { html, Component } from 'https://unpkg.com/htm/preact/standalone.module.js';

export class Logs extends Component {
 toggle () {
 this. setState({ show: !this.state.show });
 }
 render ({ logs = [], ...props }, { show }) {
 return html`
 <div class="logs" ...${props}>
 <button onClick=${() => this.toggle()}> </button>
 <!-- If expanded, render all logs -->
 ${show && html`
 <section class="logs" ...${props}>
 <!-- maps and values work just like JSX. -->
 ${logs.map(log => html`
 <${Log}...${l09} >
 `)}
 </section>
 `}
 </div>
 `;
 }
}

Fortunately, the creator of Preact made which is a utility for
processing template literals in a way that makes it feel like JSX.

You can use HTM with ReactDOM or Preact. And if you use
Preact you can get both HTM and Preact together in an ESM
compatible file.

I won't go line by line on this, but it's just to show that the syntax
is very similar to JSX. The cool thing about it is that this is totally
runnable by the browser natively, which means you can use this
code without a build step. Pretty incredible. If you end up using
this, definitely get a VS Code extension that will syntax highlight
HTML in template literals. You can look at Lit or FAST, they both
have extensions for that.

htm

https://github.com/developit/htm

Web components
<ajax-form
 prevent-default
 msg-submitting="Signing up..."
 msg-success="Congrats! You're on the list!"
 target="#item-list"
>
 <form method="post" action="/subscribe">
 <label for="email">Add your email to join the
newsletter</label>
 <input type="email" id="email" name="email">
 <button>Join</button>
 </form>
</ajax-form>

I could give an entire talk on web components, but unfortunately I only
have time to give them one slide, but I've had the chance to use these in
my job and they are pretty incredible.

A web component is essentially a custom HTML element that you create
with JavaScript. And this from my internet
buddy Chris Ferdinandi is a really cool one.

The great thing about it is that it's essentially a normal form at heart and
if JavaScript is unavailable, this form will submit to the back end like any
normal form would. But if JavaScript is available the web component
takes over and turns this form submission into an Ajax request. You can
give this component a few different props to customize it. And you're off
to the races.

A well made web component will long outlive your build step. And they
are interoperable with whatever framework you decide to use.

ajax-form web component

https://gomakethings.com/html-web-components

i can haz
telwind? ?

??? ??
???? ??? ????? ??
? ? ? ? ?

Finally, let's talk about Tailwind. Can you have tailwind in a no
build project?

False
W E L L , K I N D O F

There's really just no good way to use Tailwind without a build
step. There is a CDN version, but it's huge and does a lot of
processing on the fly, and it's only made for messing around,
not for production code.

Tailwind
Mission: impossible

Tailwind CLI
tailwindcss -i ./src/styles.css -o
./css/styles.css

Alternatives
Litewind

Open Props

If you really want to use Tailwind, and I wouldn't blame you if you did, I
suggest keeping it as simple as possible and using their CLI and
making that the only build step you have.

If you'd like to go absolutely no build step, you could try the
alternatives. One is , which is essentially a static version of
all of the classes from Tailwind 3. There's no processing so you can't
do any of the custom bracket stuff.

The other option is not a set of utility classes but a set of predefined
CSS variables that you can use. It's called . I used it on
the HTML for people website. It's nice because it gives you a
coherent set of colors and spacing and other values that you can
reuse across your styles. So it's not really utility classes but if what
you like about Tailwind is having some go-to design tokens, you can
get that with .

Litewind

Open Props

Open Props

https://litewindcss.com/
https://open-props.style/
https://open-props.style/

No-build
strategy

Modern HTML & CSS

TypeScript with JSDoc

JavaScript modules

No-build frameworks

(cheat day: Tailwind CLI)

We covered a ton of stuff in this talk and you could deep dive
on every one of them probably, but to recap, you don't have to
follow the npm installation instructions of your favorite
framework. You can choose to adopt a no-build strategy.

And the options you have available are to use the modern
technologies available in the browser. You can use the
capability of modern editors to give you type checking in your
regular JavaScript files. You can take advantage of JavaScript
modules without a bundler. You can choose frameworks that
don't need to be bundled or that have no build versions. And if
you absolutely want to use Tailwind, then you'll have to have a
cheat day and use the Tailwind CLI.

Thank you! No build tool?
No problem!
Blake Watson

blakewatson.com

blake@blakewatson.com

Mastodon: @bw@social.lol

Slides:

blakewatson.com/magnolia2025

Thanks for listening to Old Man Yells at Clouds. I know
everyone's ready to get lunch. If you have a question or want to
get in touch with me about any of this stuff, you can go to my
website, email me, get me on Mastodon, or just come up to me.
I'll be at the conference today and tomorrow. Thanks everyone!

